 Miary średnie - charakteryzują średni lub typowy poziom wartości cechy. Wokół nich skupiają się pozostałe wartości analizowanej cechy. Dzielą się na dwie grupy:

- średnie klasyczne

- średnie pozycyjne

 Średnie klasyczne liczone są ze wszystkich wartości cech analizowanych jednostek zbiorowości. Do grupy średnich klasycznych zaliczana jest:

- średnia artmetyczna

- średnia harmoniczna

- średnia geometryczna

 Średnia arytmetyczna wyraża przeciętny poziom obserwowanej cechy statystycznej w zbiorowości. Średnia jest więc sumą wszystkich wartości cechy podzieloną przez liczbę wszystkich jednostek badanej zbiorowości. W zależności od rodzaju badanego szeregu może być ona nieważona lub ważona.

Średnia arytmetyczna stosowana jest w odniesieniu do zbiorowości jednorodnych, o niewielkim stopniu zróżnicowania wartości zmiennej.

 Średnia ważona – średnia elementów, którym przypisywane są różne wagi (znaczenia) w ten sposób, że elementy o większej wadze mają większy wpływ na średnią.

 średnia arytmetyczna nieważona jest to suma

wartości wszystkich obserwacji badanej zbiorowości

podzielona przez jej liczebność

 Odwrotnością średniej arytmetycznej jest średnia harmoniczna z odwrotności wartości zmiennej. Do obliczenia średniej harmonicznej z szeregów rozdzielczych (punktowych lub przedziałowych) należy uwzględnić liczebności (wagi).

 Średnią harmoniczną stosuje się w przypadku gdy wartości zmiennej podane są w jednostkach względnych (np. m/s, cm/osoba), natomiast wagi są w jednostkach liczników tych jednostek względnych (np. m, cm).

Kolejną miarą klasyczną jest średnia geometryczna, która definiowana jest jako pierwiastek n-tego stopnia z iloczynu n wartości danej zmiennej:

Średnia geometryczna znajduję zastosowanie w badaniu średniego tempa zmian zjawiska.

 Średnie pozycyjne wskazują określoną pozycje jednostek. Do miar średnich pozycyjnych zaliczamy:

- dominante

- kwantyle

 Dominanta (modalna, wartość najczęstsza) należy do średnich pozycyjnych i jest taką wartością zmiennej, która w danym rozkładzie empirycznym najczęściej występuje.

 Dominanta stosowana jest do wskazania jaka wartość cechy statystycznej ma największą liczebność w określonej zbiorowośći.

 Kwantyle będące miarą pozycyjną, są wartościami cechy, które dzielą zbiorowość na równe lub proporcjonalne części pod względem liczby jednostek. Kwantyle mogą być wyznaczane tylko z uprzednio uporządkowanych (rosnąco lub malejąco) wartości cech w szeregu.

 do kwartyli jest zaliczany:

kwartyl pierwszy (dolny)

– dzieli zbiorowość tak, że 25% jednostek ma wartości mniejsze, a 75% większe od kwartyla pierwszego;

kwartyl drugi (mediana, wartość środkowa)

– dzieli zbiorowość tak, że 50% jednostek ma wartości mniejsze, a 50% większe od mediany;

kwartyl trzeci (górny)

– dzieli zbiorowość tak, że 75% jednostek ma wartości mniejsze, a 25% większe od kwartyla trzeciego