Silnik elektryczny prądu stałego

Silnik elektryczny prądu stałego Silnik prądu stałego – silnik elektryczny zasilany prądem stałym służący do zamiany energii elektrycznej na energię mechaniczną, zwykle w postaci energii ruchu obrotowego. Moment obrotowy powstaje w silniku elektrycznym w wyniku oddziaływania pola magnetycznego i prądu elektrycznego (siła elektrodynamiczna). Silnik elektryczny składa się ze stojana (z osadzoną parą lub kilkoma parami uzwojeń elektromagnesów) oraz wirnika z uzwojeniem twornikowym. Jako maszyna elektryczna prądu stałego może pracować zamiennie jako silnik lub prądnica.

  1. Silnik elektryczny prądu stałego Silnik prądu stałego – silnik elektryczny zasilany prądem stałym służący do zamiany energii elektrycznej na energię mechaniczną, zwykle w postaci energii ruchu obrotowego. Moment obrotowy powstaje w silniku elektrycznym w wyniku oddziaływania pola magnetycznego i prądu elektrycznego (siła elektrodynamiczna). Silnik elektryczny składa się ze stojana (z osadzoną parą lub kilkoma parami uzwojeń elektromagnesów) oraz wirnika z uzwojeniem twornikowym. Jako maszyna elektryczna prądu stałego może pracować zamiennie jako silnik lub prądnica. W tym drugim przypadku wirnik napędzany jest energią mechaniczną dostarczoną z zewnątrz, a na zaciskach uzwojenia twornika odbierana jest wytworzona energia elektryczna.

Podział Ze względu na sposób wzbudzenia pola magnetycznego dzielą się na: • silnik prądu stałego obcowzbudny – silnik prądu stałego z magnesami trwałymi lub z elektromagnesami, t.j. z osobnym uzwojeniem wzbudzenia w stojanie zasilanym z oddzielnego źródła zasilania niż obwód twornika – stosowane głównie w napędach wymagających regulacji prędkości w szerokim zakresie obrotów; • silnik prądu stałego samowzbudny – silniki z elektromagnesem w stojanie mogą mieć połączone uzwojenia stojana i wirnika szeregowo, równolegle (bocznikowo) lub w sposób mieszany. Sposób podłączenia określa rodzaj silnika.  silnik szeregowy – o uzwojeniu wzbudzenia w stojanie połączonym szeregowo z uzwojeniem twornika. Charakteryzuje się dużą zależnością prędkości obrotowej od obciążenia. Zmniejszanie obciążenie powoduje wzrost prędkości obrotowej (teoretycznie do nieskończenie wielkiej) i grozi tzw. rozbieganiem, a w konsekwencji zniszczeniem silnika. Jest to jego poważna wada. Dlatego tego typu silników nie wolno włączać bez obciążenia. Stosowane są głównie w trakcji elektrycznej (napędy lokomotyw, tramwajów, trolejbusów) i pojazdach mechanicznych (wózki akumulatorowe, rozruszniki samochodów), w napędach dźwigów, wentylatorów itp. Silnik szeregowy może być, jako jedyny silnik prądu stałego, zasilany również prądem przemiennym. Silniki takie zwane są też silnikami uniwersalnymi. Możliwość ich różnego zasilania wynika z faktu, że kierunek wirowania wirnika nie zależy od biegunowości przyłożonego napięcia. W przypadku, gdy silnik ma być zasilany prądem stałym stojan wykonywany jest z litego materiału. Natomiast przy zasilaniu prądem przemiennym wykonuje się go z pakietu izolowanych blach zmniejszając straty energii powstałe na skutek prądów wirowych. Ze względu na stosunkowo małe wymiary przy stosunkowo dużej mocy oraz duże prędkości obrotowe, silniki te znalazły liczne zastosowania w urządzeniach wymagających dużych prędkości obrotowych napędu, np. w odkurzaczach, elektronarzędziach, suszarkach, sokowirówkach, mikserach itp.  silnik bocznikowy – o uzwojeniu wzbudzenia w stojanie przyłączonym równolegle z uzwojeniem twornika. Charakteryzuje się małą podatnością na zmianę prędkości obrotowej na skutek zmiany obciążenia. Stosowany głównie w napędach obrabiarek, pomp, dmuchaw, kompresorów;  silnik szeregowo-bocznikowy – o uzwojeniu wzbudzenia w stojanie połączonym z uzwojeniem twornika w sposób mieszany (część szeregowo, a część równolegle). Charakteryzuje się brakiem głównej wady silnika szeregowego – możliwości jego rozbiegania przy braku obciążenia, a także ma jego zalety – duży moment obrotowy w szerokim zakresie obrotów i zależność prędkości obrotowej od obciążenia. Stosowany jest zazwyczaj jako silniki dużych mocy, tam gdzie występuje ciężki rozruch: do napędu walcarek, pras, dźwigów oraz w napędach okrętowych mechanizmów pokładowych.

  1. Budowa Podstawowymi elementami tego modelu silnika DC (silnika elektrycznego prądu stałego) są:
  • magnes
  • umieszczona pomiędzy biegunami magnesów ramka
  • komutator (służy do zmiany kierunku prądu)
  • szczotki (doprowadzają prąd do komutatora) Prąd doprowadzany jest do ramki przez dwie ślizgające się po pierścieniu szczotki. Silnik elektryczny prądu stałego zbudowany jest z dwóch magnesów zwróconych do siebie biegunami różnoimiennymi, tak aby pomiędzy nimi znajdowało się pole magnetyczne. Pomiędzy magnesami znajduje się przewodnik w kształcie ramki podłączony do źródła prądu poprzez komutator i ślizgające się po nim szczotki. Przewodnik zawieszony jest na osi, aby mógł się swobodnie obracać.Na ramkę, w której płynie prąd elektryczny, działa para sił elektrodynamicznych z powodu obecności pola magnetycznego. Siły te powodują powstanie momentu obrotowego. Ramka wychyla się z położenia poziomego, obracając się wokół osi. W wyniku swojej bezwładności mija położenie pionowe (w którym moment obrotowy jest równy zero a szczotki nie zasilają ramki). Po przejściu położenia pionowego ramki, szczotki znów dotykają styków na komutatorze, ale odwrotnie, prąd płynie w przeciwnym kierunku, dzięki czemu ramka w dalszym ciągu jest obracana w tym samym kierunku.

Prawdziwe silniki prądu stałego są o wiele bardziej skomplikowane. Zwykle zamiast magnesów stałych stosuje się elektromagnesy, dla których wartość pola elektromagnetycznego jest o wiele większa, uzwojenie posiada wiele zwojów, a komutator jest zdecydowanie bardziej skomplikowany. Mimo to zasada działania pozostaje taka sama. Produkowane obecnie silniki prądu stałego w zdecydowanej większości są to tzw. maszyny komutatorowe. Istnieje jeszcze inna konstrukcja tzw. maszyny unipolarne, ale jest ona rzadko stosowana, ponieważ może być stosowana tylko dla małych napięć zasilających. Wirnik silnika prądu stałego wykonany jest w kształcie walca, na powierzchni, którego znajdują się żłobki. W żłobkach tych umieszczane jest uzwojenie, a następnie jest on zamykany za pomocą specjalnych klinów, zapobiegając w ten sposób wypadnięciu podczas wirowania. Rdzeń żłobka, w celu osiągnięcia lepszych właściwości magnetycznych, wykonywany jest z pakietowanych blach.

Nieruchomy stojan, wykonany jest w kształcie wydrążonego walca, zwykle, ze względu na stałe pole magnetyczne, jako żeliwny lub staliwny odlew Po wewnętrznej stronie stojana umieszczone są bieguny(najczęściej główne i pomocnicze), na których nawinięte są uzwojenia. Część bieguna umieszczona najbliżej osi nazywa się nabiegunnikiem i jest szersza od reszty bieguna. Krzemowe szczotki ślizgając się po komutatorze umożliwiają połączenie obracającego się uzwojenia wirnika z zasilającym je nieruchomym źródłem prądu stałego. Bardzo ważną częścią silnika prądu stałego, umożliwiającą mu prawidłowe funkcjonowanie jest komutator. Rola, jaką spełnia jest omówiona szerzej w części dotyczącej zasady działania silnika DC. Komutator wykonany jest w postaci wielu miedzianych wycinków, wzajemnie odizolowanych. Do każdego z wycinków przyłączony jest jeden koniec uzwojenia wirnika. W silniku komutatorowym prądu stałego uzwojenie wzbudzenia znajduje się w stojanie natomiast uzwojenie twornika w wirniku (w silniku synchronicznym jest odwrotnie). Komutator pełni rolę prostownika mechanicznego. Pole magnetyczne wzbudzenia uzyskuje się zasilając uzwojenia stojana prądem stałym, ponieważ trudno byłoby stworzyć wystarczająco silne pole w oparciu o magnesy trwała i z pewnością byłyby też znacznie kosztowniejsze. Stojan oprócz biegunów i uzwojeń głównych wytwarzających główne pole magnetyczne posiada także bieguny pomocnicze, na których nawinięte jest uzwojenie pomocnicze, która jest połączone równolegle z uzwojeniem wirnika. Zadaniem tego uzwojenia jest wyeliminowanie pewnych niekorzystnych zjawisk spowodowanych oddziaływaniem wirnika, związanych ze zmiana rozkładu indukcji magnetycznej pod biegunami, mogących objawiać się nadmiernym iskrzeniem przy ocieraniu szczotek o komutator. Rzeczywiste silniki posiadają więcej ramek połączonych szeregowo, które są przyłączone do komutatora za pośrednictwem szczotek. Ramka składająca się z pojedynczego przewodu w rzeczywistych silnikach jest zastępowana zwojnicą. Podczas przełączania kolejnych zwojnic następuje jej zwarcie, powodujące iskrzenie na komutatorze oraz utratę energii zgromadzonej w polu magnetycznym wytwarzanym w tej zwojnicy. By zmniejszyć te zjawiska, wirnik dzielony jest nawet na kilkadziesiąt zwojnic. Gdy wirnik silnika obraca się, ramka z prądem (zwojnica) porusza się w polu magnetycznym. Powoduje to indukowanie się siły elektromotorycznej, która zmniejsza natężenie prądu płynącego w wirniku, zmniejszając moment obrotowy wytwarzany przez silnik. Indukowana siła elektromotoryczna jest proporcjonalna do indukcji magnetycznej pola wytwarzanego przez magnes oraz prędkości ruchu przewodnika wirnika, która to jest zależna od prędkości obrotowej wirnika. Z ostatniego wzoru wynika, że jeżeli indukcja magnetyczna stojana nie zależy od obrotów wirnika, a warunek ten jest spełniony dla silnika równoległego i obcowzbudnego, to: • moment obrotowy silnika jest największy, gdy silnik nie obraca się i maleje wraz ze wzrostem obrotów, • obroty silnika zależą od momentu obciążającego silnik, ale przy małej rezystancji wirnika zależność ta jest niewielka i silnik ma prawie stałe obroty w zakresie – od biegu luzem do obciążenia znamionowego, • obroty silnika nieobciążonego zależą od wielkości indukcji magnetycznej B (im większa indukcja, tym mniejsze obroty biegu jałowego)

  1. Zasada działania Jeżeli ramka zostanie podłączona do źródła prądu stałego, na jej znajdujące się w polu magnetycznym magnesu ramiona, zaczną oddziaływać siły elektrodynamiczne, powstanie moment siły powodujący obrót ramki wokół osi obrotu. Moment ten jest proporcjonalny do iloczynu wektorów siły i ramienia, więc jego wartość zmienia się, gdy zmienie ulega wartość kąta pomiędzy tymi wektorami. Gdy ramka ustawiona jest prostopadle do linii pola magnetycznego, wektory siły i ramienia ustawione są równolegle, a wartość momentu siły działającego na ramkę spada do zera, Prędkość obracania się ramki znacznie spada i tylko dzięki bezwładności udaje się jej pokonać krytyczne prostopadłe położenie. Aby utrzymać stały kierunek obrotu ramki, w położeniu prostopadłym (za pośrednictwem komutatora) następuje zmiana kierunku przepływu prądu. Wówczas ponownie pojawia się moment, który dalej obraca ramkę w tym samym kierunku. Jego wartość rośnie aż do osiągnięcia przez ramkę położenia poziomego (wówczas wektory siły i ramienia są prostopadłe), poczym ponownie zaczyna maleć, aby w położeniu pionowym całkiem spaść do zera. W momencie gdy szczotki trafiają na przerwę w komutatorze (w położeniu pionowym ramki), prąd w ramce przestaje płynąć. Dalszy obrót prowadzi do zmiany kierunku prądu w ramce w związku z czym ramka zachowuje stały kierunek obrotu.